揭露項目	案例				
介入詳情及輸出 Details and output of the intervention	1. 模型架構 (1)神經網路模型 特徵:模仿人類大腦神經元結構,具有多層(輸入層、隱藏層、輸出層)。 (2)類型: 全連接神經網路(FNN):處理結構化數據。 卷積神經網路(CNN):專注於圖像數據處理。 遞歸神經網路(RNN)與其變種(如 LSTM、GRU):處理時間序列與自然語言數據。 2. 訓練技術 模型訓練旨在最小化誤差並優化性能,涉及以下技術: (1)損失函數:衡量模型輸出與真實值之間的差距(如均方誤差、交叉熵)。 (2)優化算法:調整模型參數以最小化損失函數。常用方法包括,梯度下降法(SGD)、正則化技術、防止過擬合的技術(例如 L1/L2 正則化、Dropout)。 3. 模型輸出的形式 (1)分類問題:輸出為離散類別標籤,例如分類(0或1代表是否有該目標類別)。				
介入目的 Purpose of the intervention	1. 核心目標: (1)精準識別心臟異常 (2)實時處理與快速反饋 (3)低資源環境的適配性 (4)提高醫療效率 (5)支持遠程健康管理 2. 適用情境: (1)居家健康監測與慢性病管理 (2)便攜式醫療設備應用				
介入的警告範圍外使用 Cautioned Out-of-Scope Use of the intervention	(3)偏遠地區或資源有限的醫療環境 1.適用範圍: (1)心律異常篩檢 (2)居家健康監測 2.不適用範圍:				

- (1)複雜心電診斷
- (2)罕見或非標準心律異常
- (3)其他系統性疾病引起的心電異常
- (4)低品質或受干擾的數據

3.可能發生之風險:

- (1)誤偵測與漏偵測風險
- (2)過度依賴性風險
- (3)數據隱私與安全風險
- (4)模型適應性問題
- (5)設備使用風險

人工智慧模型使用 CNN+GRU 神經網路的核心技術

1. PhysioNet 數據集

PhysioNet 是醫療領域中廣泛使用的公開數據庫,提供高品 質的心電圖 (ECG) 數據,適用於訓練和評估人工智慧模 型:

(1)數據特徵:

包含多導聯或單導聯 ECG 數據,標註詳細的心律異常(如 房顫、室性早搏)。

(2)時間序列性質:

通常以高取樣頻率(如250 Hz或500 Hz)記錄。

介入開發詳情及輸入特徵

and input features

2. 模型結構: CNN + GRU 組合

Intervention development details CNN 與 GRU 的結合利用卷積網路的特徵提取能力與遞歸網 路的時間序列處理能力,適合處理像 ECG 這樣的時序數 據:

CNN(卷積神經網路)部分

核心功能:提取 ECG 信號的局部空間特徵,如心跳波形形 狀(P波、QRS波、T波)。

GRU(門控循環單元)部分

核心功能:學習信號的長期依賴關係和動態時間特徵。 將 CNN 與 GRU 提取的特徵進行整合,輸出分類結果(如正 常與異常心律)。

3. 訓練方法

(1)損失函數

二分類問題:交叉熵損失(Binary Cross-Entropy)。

(2)優化算法

使用 Adam 或 RMSProp 等以快速收斂和穩定訓練過程。

(3)評估指標

靈敏度 (Sensitivity)、特異性 (Specificity)。

開發過程與數據平衡

1. 需求分析與目標設定

確定目標:異常心律檢測。

確定模型性能指標:包括準確率、靈敏度、特異性等評估指標。

2. 數據收集與預處理

數據來源:使用公開數據集(如 PhysioNet)或醫療機構提供的專屬數據。

3. 數據集平衡

ECG 數據通常存在類別不平衡的問題(如正常心律數據遠多 於異常心律)。

使用方法:

確保介入開發公平性的過程

Process used to ensure fairness in development of the intervention

(1)下採樣(Undersampling):減少多數類別樣本數量以平衡數據分佈。

(2)過採樣 (Oversampling): 增加少數類別樣本數量

(3)加權損失函數:根據類別比例給模型損失函數加權,減少 不平衡影響。

4. 模型開發與訓練

選擇模型架構:CNN+GRU 結合,用於提取局部特徵與時間序列。

訓練方法:

使用分批訓練(Batch Training),結合學習率調整策略。

損失函數:對應二分類或多分類選擇交叉熵損失。

優化算法:選用 Adam、RMSProp 等以加速收斂。

5. 模型評估與優化

劃分數據集:將數據分為訓練集與測試集(4:1)。

性能評估:使用準確率、靈敏度、特異性、F1 分數等多指標評估。

調參與調整:調整超參數(如學習率、隱藏層數量)以提升 模型性能。

6. 部署與測試

部署環境:根據應用場景,選擇本計畫設備以及雲端服務進 行部署。

1. 確定驗證目標

模型性能驗證:評估模型在外部數據集上的靈敏度、特異性、精確度等指標。

2. 選擇外部驗證數據集

使用獨立於訓練和測試數據集的外部數據,這些數據應代表 模型可能面臨的真實應用場景。

來源要求:

不同於訓練數據的機構、設備或人群。

覆蓋多樣性,例如不同年齡、性別、種族及病理情況。

外部驗證過程

External validation process

3. 模型之訓練

分為預訓練與臨床數據訓練兩個部份,預訓練共使用了四個公開數據庫,分別為:A large scale 12-lead electrocardiogram database for arrhythmia study. [1]、PTB-XL, a large publicly available electrocardiography dataset. [2]、Georgia 12-Lead ECG Challenge Database. [3]

參考連結:

- [1] https://physionet.org/content/ecg-arrhythmia/1.0.0/
- [2] https://physionet.org/content/ptb-xl/1.0.3/
- [3] https://www.kaggle.com/datasets/bjoernjostein/georgia-
- 12lead-ecg-challenge-database

本模型表現之量化指標如下:

模型表現的量化指標 Quantitative measures of performance

	數據量			效能指標			
心律類別	PhysioNet 數據集			敏感度	特異度	精確度	E1
	A-large	PTB-XL	Georgia	似似及	村共及	初难及	F1-score
正常竇性心律	13744						
竇性心律過緩	9299			99.2	93.9	98.7	0.989
竇性心律過速	2758						
心房顫動	3772		95.0	97.6	84.3	0.871	
心室早期收縮	1510		75.2	99.0	83.8	0.751	
一度房室傳導阻滯	684			67.2	99.4	72.4	0.694

1. 性能監控

建立基準數據:在模型部署前,記錄其在測試集上的基準性 能(如敏感度、特異度、F1 分數等)。

實時監控:定期收集模型在實際使用中的預測數據,計算並 分析其性能指標是否有顯著變化。

漂移檢測:監控數據分佈或標籤分佈是否發生漂移(如患者 人群變化、設備更新等),以避免模型性能下降。

錯誤分析:定期分析錯誤案例。

介入實施和使用的持續維護

Ongoing maintenance of intervention implementation and use

2. 錯誤修復

結果錯誤校正:若模型誤判,檢查其輸入數據和人工判讀結 果是否存在錯誤,必要時附以加註。

模型調參或重訓:基於錯誤案例,調整模型的權重或進行增 量學習,以修正特定的錯誤模式。

3. 模型更新

定期重新訓練模型以提高性能。

1. 定期重新訓練模型

數據收集與準備:持續收集臨床應用中的新數據,包括正常 案例和錯誤案例。

2. 更新數據集

數據多樣性:確保數據集中包含多種性別、年齡、種族及不 同疾病分佈。

更新和持續驗證或公平性評估 計畫

of fairness assessment schedule

3. 持續性驗證

Update and continued validation 性能監控:使用關鍵性能指標(如靈敏度、特異度、F1 分 數等) 監控模型效能。

> 模型回測:定期在歷史數據上回測新模型,檢查是否保持與 舊模型一致或更佳的性能。

4. 公平性評估

偏倚檢測:分析模型在不同群體(如性別、種族、年齡)上 的性能差異。