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ABSTRACT The recent outbreaks of Zika virus (ZIKV) and associated birth defects in
regions of dengue virus (DENV) endemicity emphasize the need for sensitive and
specific serodiagnostic tests. We reported previously that enzyme-linked immunosor-
bent assays (ELISAs) based on the nonstructural protein 1 (NS1) of DENV serotype 1
(DENV1) and ZIKV can distinguish primary DENV1, secondary DENV, and ZIKV infec-
tions. Whether ELISAs based on NS1 proteins of other DENV serotypes can discrimi-
nate various DENV and ZIKV infections remains unknown. We herein developed
DENV2, DENV3, and DENV4 NS1 IgG ELISAs to test convalescent- and postcon-
valescent-phase samples from reverse transcription-PCR-confirmed cases, including
25 primary DENV1, 24 primary DENV2, 10 primary DENV3, 67 secondary DENV, 36
primary West Nile virus, 38 primary ZIKV, and 35 ZIKV with previous DENV infections
as well as 55 flavivirus-naive samples. Each ELISA detected primary DENV infection
with a sensitivity of 100% for the same serotype and 23.8% to 100% for different se-
rotypes. IgG ELISA using a mixture of DENV1-4 NS1 proteins detected different pri-
mary and secondary DENV infections with a sensitivity of 95.6% and specificity of
89.5%. The ZIKV NS1 IgG ELISA detected ZIKV infection with a sensitivity of 100%
and specificity of 82.9%. On the basis of the relative optical density ratio, the combi-
nation of DENV1-4 and ZIKV NS1 IgG ELISAs distinguished ZIKV with previous DENV
and secondary DENV infections with a sensitivity of 91.7% to 94.1% and specificity
of 87.0% to 95.0%. These findings have important applications to serodiagnosis, se-
rosurveillance, and monitoring of both DENV and ZIKV infections in regions of ende-
micity.
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The rapid spread of ZIKV during the 2015 to 2016 outbreak and its association with
fetal microcephaly and other birth defects, known as congenital Zika syndrome

(CZS), highlight the need for sensitive and specific diagnostic tests, especially for
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pregnant women (1–4). According to the guidelines from the U.S. Centers for Disease
Control and Prevention (CDC), the laboratory diagnosis of ZIKV infection includes a
positive nucleic acid test as soon as possible post-symptom onset (PSO) to confirm ZIKV
infection and a negative IgM test to exclude ZIKV infection (5, 6). As most (�80%) ZIKV
infections are asymptomatic and many individuals, including pregnant women, un-
dergo ZIKV testing beyond the period when RNA is detectable, serological tests remain
a critical component of ZIKV diagnosis (5, 6). Moreover, ZIKV is present in multiple body
fluids and can be transmitted sexually or after asymptomatic infection (7–9), empha-
sizing the importance of serological tests.

ZIKV belongs to the genus Flavivirus of the family Flaviviridae, in which several
vector-borne viruses cause medically important human diseases, including the four
serotypes of dengue virus (DENV1 to DENV4), West Nile virus (WNV), Japanese enceph-
alitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV) (10).
As the major target of antibody response after flaviviral infection, the envelope (E)
protein has been the main antigen for serological tests, including the use of recombi-
nant E protein, inactivated virions, or virus-like particles (10–13). However, due to the
cross-reactivity of the anti-E antibody to ZIKV and other flaviviruses (13–17), positive or
equivocal IgM results based on E protein require further testing with laborious plaque
reduction neutralization tests (PRNT) (5, 6). PRNT can confirm individuals who had ZIKV
as the first flaviviral infection, known as primary ZIKV (pZIKV) infection, but the results
are more difficult to interpret for those who previously acquired DENV or other flaviviral
infections, hampering the application of E-protein-based serological tests for ZIKV in
regions of DENV endemicity.

Several recent studies have reported that DENV immune sera and monoclonal
antibodies (MAbs) against DENV E protein enhance ZIKV replication in vitro and in vivo
(18–22), so-called antibody-dependent enhancement (23), and raised the possibility
that the risk and severity of CZS might be increased by previous DENV infection. Given
the explosive spread of ZIKV and CZS during the 2015 to 2016 outbreak in regions of
DENV endemicity, serological tests that can distinguish pZIKV infection from ZIKV
infection with previous DENV (ZIKVwprDENV) infection are critical to further our
understanding of the pathogenesis of ZIKV and CZS.

A study of human MAbs against nonstructural protein 1 (NS1) revealed that most
anti-NS1 MAbs derived from patients with pZIKV infection were specific to ZIKV, and
�50% of those from patients with ZIKVwprDENV infection reacted to DENV (21); other
studies using ZIKV-specific NS1 MAbs in blockade-of-binding enzyme-linked immu-
nosorbent assays (ELISAs) showed that ZIKV NS1 protein in serodiagnosis can distin-
guish ZIKV and DENV (24, 25). We reported previously that the combination of ZIKV and
DENV1 NS1 ELISAs distinguishes pZIKV, primary DENV1 (pDENV1), secondary DENV
(sDENV,) and ZIKVwprDENV infections (26). Whether an NS1 ELISA based on other DENV
serotypes can detect different DENV infections and distinguish them with ZIKV infection
remains unknown. In this study, we developed DENV2, DENV3, and DENV4 NS1 ELISAs
to detect primary DENV infections of different serotypes and showed that a mixture of
DENV1-4 NS1 proteins in an ELISA can detect various primary DENV infections, and its
combination with a ZIKV NS1 ELISA can distinguish DENV and ZIKV infections.

MATERIALS AND METHODS
Clinical samples. The study of coded serum or plasma samples was approved by the institutional

review board (IRB) of the University of Hawaii (CHS 17568, CHS 23786). The numbers, serotypes, sampling
time, and sources of different panels of samples are summarized in Table 1. Samples collected
�3 months or �3 months PSO were designated convalescent- or postconvalescent-phase samples,
respectively. Samples from reverse transcription-PCR (RT-PCR)-confirmed Zika cases that were DENV
naive or previously DENV exposed, designated pZIKV and ZIKVwprDENV panels, respectively, were
collected between July and March 2017 from the Pediatric Dengue Cohort Study (PDCS) and the
pediatric Dengue Hospital-based Study in Managua, Nicaragua. The DENV immune status was based on
anti-DENV antibody testing by an inhibition ELISA at entry and annually for the PDCS as described
previously (26–28). These studies were approved by the IRBs of the University of California, Berkeley, and
Nicaraguan Ministry of Health. Parents or legal guardians of all subjects provided written informed
consent, and subjects 6 years old and older provided assent. Convalescent-phase samples from patients
presenting with symptoms compatible with Zika and detectable anti-DENV IgG antibodies during the
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acute phase, designated the probable ZIKVwprDENV panel, were collected between November 2015 and
May 2016 at the Complexo Hospital at Federal University of Bahia, Bahia, Brazil (26). Thirty-six plasma
samples from blood donors who tested positive for WNV transcription-mediated amplification and IgM
and IgG antibodies between 2006 and 2015, designated primary WNV (pWNV) infection, were provided
by the American Red Cross at Gaithersburg, MD (21, 29). Convalescent- and postconvalescent-phase
samples from RT–PCR-confirmed cases with different primary DENV infections (including pDENV1,
primary DENV2 [pDENV2], and primary DENV3 [pDENV3], except primary DENV4 infection) or sDENV
infection were from Taiwan, Hawaii, and Nicaragua prior to the 2015 to 2016 Zika outbreak; 55
flavivirus-naive samples from a seroprevalence study were included as the controls in this study (26,
30–33). Primary DENV or sDENV infection was determined by IgM/IgG ratio or focus reduction neutral-
ization tests as described previously (26, 30–32).

Recombinant NS1 proteins. The sequence for the gene encoding NS1 (residues 1 to 352) of ZIKV
(HPF2013 strain) with a His tag at the C terminus was codon optimized (Integrated DNA Technologies,
Skokie, IL) and cloned into the pMT-Bip vector (26). Drosophila S2 stable clones expressing ZIKV NS1
protein were established, followed by CuSO4 induction and purification by a fast purification chroma-
tography system (AKTA Pure; GE Health Care Bio-Science, Pittsburgh, PA) (26). Purified DENV1 to DENV4
NS1 proteins were purchased from the Native Antigen Company (Oxford, UK).

ELISAs. DENV1 and ZIKV NS1 IgG ELISAs have been described previously (26). DENV2, DENV3, DENV4,
and DENV1-4 NS1 IgG ELISAs were technically developed and set up in the same way. Briefly, 96-well
plates were coated with purified NS1 proteins (16 ng for individual NS1 proteins per well and 8/4/8/4 ng
for mixed DENV1/2/3/4 NS proteins per well) at 4°C overnight, followed by blocking (StartingBlock
blocking buffer; Thermo Scientific, Waltham, MA) at room temperature for 1 h, incubating with primary
antibody (serum or plasma at 1:400 dilution) at 37°C for 2 h, washing with washing buffer (0.5% Tween
20 in 1� phosphate-buffered saline [PBS]) 4 times, incubating with secondary antibody (anti-human IgG
conjugated to horseradish peroxidase [HRP] at 1:10,000 dilution; Jackson ImmunoResearch Laboratories,
West Grove, PA) at 37°C for 1 h, and washing with washing buffer 6 times (26, 31, 32). After adding
tetramethylbenzidine substrate (Thermo Scientific, Waltham, MA) at room temperature for 15 min
followed by stop solution, the optical density (OD) at 450 nm was read with a reference wavelength of
630 nm. Each ELISA plate included two positive controls (OD higher than 1; two confirmed Zika or
confirmed dengue samples), four negative controls (flavivirus-naive sera or plasma), and test samples (all
in duplicates). The OD values were divided by the mean OD value of one positive control (OD close to
1) in the same plate to calculate the relative OD (rOD) values for comparison between plates. The cutoff
rOD was defined by the mean rOD value of negatives plus 12 standard deviations, which gave a
confidence level of 99.9% from 4 negatives (34). The ratio of rOD of ZIKV NS1 IgG ELISA to that of
DENV1-4 NS1 IgG ELISA was determined, and a cutoff rOD ratio at 0.24 was chosen as described
previously (26). ZIKV, DENV1, DENV2, and DENV1-4 NS1 IgM ELISAs were performed similarly with some
modifications to detect NS1-specfic IgM responses. Each sample was preincubated with an IgG absor-
bent, Gullsorb reagent (Meridian Bioscience, Cincinnati, OH), for 10 min and anti-human IgM conjugated
with HRP (Jackson ImmunoResearch Laboratories, West Grove, PA) was used as secondary antibody (26,
35). Each ELISA was performed twice (each in duplicates).

Statistical analysis. Two-tailed Mann-Whitney tests were used to determine the P values between
two groups (GraphPad Prism 6). The 95% confidence interval (CI) was calculated by Excel.

TABLE 1 Sampling time, serotypes, and sources of different serum/plasma panels

Panela

No. of subjects
testing positive/total Category (no. of samples)

Sampling time PSOb

(mean [range]) Source (n) of samples, yr(s)

pDENV1 21/25 Convalescent (9) 49 (19–89) days Taiwan (8), 2006–2009
Hawaii (11), 2015
Nicaragua (2), 2006–2008

Postconvalescent (16) 6.7 (3–15) mo

pDENV2 18/24 Convalescent (11) 11 (6–20) days Taiwan (16), 2001–2002
Nicaragua (2), 2006–2008Postconvalescent (13) 19.4 (3–96) mo

pDENV3 4/10 Postconvalescent (10) 11 (3–19) mo Nicaragua (2), 2006–2008
pWNV 36/36 Early convalescent (36) NAc U.S. ARC, 2006–2015
pZIKV 20/38 Convalescent (20) 17 (14–24) days Nicaragua, 2016

Postconvalescent (18) 6.9 (6–8) mo
ZIKVwprDENV 20/35 Convalescent (20) 16 (14–19) days Nicaragua, 2016

Postconvalescent (15) 7.0 (6–8) mo
Probable ZIKVwprDENV 19/19 Convalescent (19) 10 (6–14) days Brazil, 2015–2016
sDENV 59/63 Convalescent (24) 14 (8–35) days Taiwan, 2001–2002

Postconvalescent (20) 9.4 (3–12) mo Taiwan (2), 2006–2009
Nicaragua (18), 2006–2008

Postconvalescent (14) 19.7 (18–24) mo Taiwan (10), 2006–2009
Nicaragua (4), 2006–2008

Postconvalescent (5) 71 (67–72) mo Taiwan, 2006–2009
apDENV1, primary DENV1 infection; pDENV2, primary DENV2 infection; pDENV3, primary DENV3 infection; pWNV, primary WNV infection; pZIKV, primary ZIKV infection;
sDENV, secondary DENV infection; ZIKVwprDENV, ZIKV infection with previous DENV infection.

bPSO, post-symptom onset.
cNA, not applicable. Index samples tested positive for WNV transcription-mediated amplification and IgM and IgG from blood donors at the American Red Cross (ARC).
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RESULTS
DENV1 to DENV4 NS1 IgG ELISAs. We first employed DENV1, DENV2, and DENV3

NS1 IgG ELISAs to test samples from primary DENV infection (pDENV1, pDENV2, and
pDENV3) panels. As shown in Fig. 1A, the DENV1 NS1 IgG ELISA detected the pDENV1

FIG 1 Results of DENV1, DENV2, DENV3, DENV4, and DENV1-4 NS1 IgG ELISAs tested with primary DENV
infection panels. NS1 IgG ELISAs based on DENV1 (A), DENV2 (C), DENV3 (E), DENV4 (G), and DENV1-4 (H) were
tested with convalescent-phase samples of different panels (negative control [NC], primary DENV, pZIKV,
pWNV, or sDENV). Results of pDENV1 (B), pDENV2 (D), and pDENV3 (F) panels tested with different NS1 IgG
ELISAs. Dotted lines indicate cutoff rODs. Data are the means from two experiments (each in duplicates);
horizontal lines are the means from each panel. D1, DENV1; D2, DENV2; D3, DENV3; D4, DENV4; D1-4, DENV1-4.

Tyson et al. Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01464-18 jcm.asm.org 4

https://jcm.asm.org


panel (100%) but not the pZIKV, pWNV, or naive panel. Similarly, DENV2 and DENV3 NS1
IgG ELISAs detected pDENV2 (92.3%) and pDENV3 (100%) panels, respectively, but not
the pZIKV, pWNV, or naive panel (Fig. 1C and E). We next examined if the pDENV1 panel
was detected by DENV2, DENV3, or DENV4 NS1 IgG ELISA and found the detection rates
were greatly reduced (52.0%, 32.0%, and 0%, respectively) (Fig. 1B). Similarly, the
detection rates for pDENV2 and pDENV3 panels by ELISAs using heterologous NS1
protein were generally reduced, ranging from 23.1% to 53.8% for pDENV2 and 10.0%
to 100% for pDENV3 panels compared with those using homologous NS1 protein (Fig.
1B, D, and F). We have also established a DENV4 NS1 IgG ELISA, which detected the
sDENV panel (85.0%) and some primary DENV panels (10.0% to 23.1%) but not the
pZIKV, pWNV, or naive panel (Fig. 1G).

Mixed DENV1-4 NS1 IgG ELISA. To establish a single DENV-NS1 IgG ELISA that can
detect primary DENV infections of different serotypes, we coated a ELISA plate with a
mixture of DENV1-4 NS1 proteins. It had a detection rate of 96.0%, 84.6%, or 100% for
the pDENV1, pDENV2, or pDENV3 panel, respectively, which was comparable to that
using homologous NS1 protein (Fig. 1B, D, F, and H). We thus used the mixed DENV1-4
NS1 IgG ELISA to test other panels in this study. As expected, the DENV1-4 NS1 IgG
ELISA did not detect samples from the naive, pZIKV, or pWNV panel except one in the
pWNV panel (Fig. 1H).

Previously, we reported that the DENV1 NS1 ELISA detects the sDENV panel with
detection rates ranging from 95.0% to 100% (within 2 years PSO) to 80.0% (5 to 6 years
PSO) (26). When testing with the sDENV panel (3 to 12 months PSO), the DENV1-4 NS1
IgG ELISA had a detection rate of 100%, comparable to those of the DENV1, DENV2, and
DENV3 NS1 IgG ELISAs (Fig. 2A), suggesting that after secondary DENV infection,
cross-reactive anti-NS1 antibodies can recognize NS1 protein of different serotypes well
except from DENV4, which was more distantly related to DENV1-3 and less likely to be
the exposed serotype of our study participants based on the epidemiological histories
(27, 30). When testing the sDENV panels collected at different times, the detection rates
ranged from 95.8% to 100% (�1 month to 3 to 12 months PSO) to 92.9% to 80% (1.5
to 6 years PSO), which were comparable to that of the DENV1 NS1 IgG ELISA reported
previously (Fig. 2B) (26). When testing with the ZIKVwprDENV panel (�1 month and 6
to 8 months PSO) from Nicaragua and probable ZIKVwprDENV panel from Brazil
(�1 month PSO), the DENV1-4 NS1 IgG ELISA had detection rates of 80.0% to 94.7%
(Fig. 2C and D), which were higher than those of the DENV1 NS1 IgG ELISA (60.0% to
89.5%), probably due to the presence of serotypes other than DENV1 in these regions
(26). Taken together, these findings suggest that the DENV1-4 NS1 IgG ELISA is a
convenient and single DENV NS1 IgG ELISA that detects three serotypes of primary
DENV infection as well as secondary DENV infection.

Comparison of convalescent- and postconvalescent-phase samples. Since sev-
eral of our panels included both convalescent-phase (�1 to 3 months PSO) and
postconvalescent-phase (�3 months PSO) samples, we next compared the results of
DENV1-4 and ZIKV NS1 IgG ELISAs with different sampling times. For the pZIKV panel,
we observed increased detection rates (5.0% versus 100%) and rOD values of ZIKV NS1
IgG ELISA when comparing convalescent- with postconvalescent-phase samples
(Fig. 3A). This was different from the ZIKVwprDENV panel, which showed high detection
rates (95.0% to 100%) for both convalescent- and postconvalescent-phase samples (Fig.
3B). A trend of increased detection rates from convalescent to postconvalescent phases
was also observed for pDENV1 and pDENV2 panels (Fig. 3C and D), which was further
supported by sequential samples from patients with primary DENV1 or DENV2 infection
(see Fig. S1 in the supplemental material).

The results of all samples tested with DENV1, DENV2, DENV3, DENV4, DENV1-4, and
ZIKV NS1 IgG ELISAs are summarized in Table 2. For the statistical analysis comparing
different panels, only one sample from each participant was included. The overall
sensitivity of the DENV1-4 NS1 IgG ELISA was comparable to that of the DENV1 NS1 IgG
ELISA (95.6% versus 94.5%, respectively) but higher than those of DENV2 and DENV3
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NS1 IgG ELISAs (Table 3). Similarly, the overall specificity of the DENV1-4 NS1 IgG ELISA
was comparable to that of the DENV1 NS1 IgG ELISA (89.5% versus 91.9%, respectively)
but higher than that of the DENV2 NS1 IgG ELISA. For the ZIKV NS1 IgG ELISA, the
sensitivity was 100% and specificity was 82.9%, mainly due to the cross-reactivity from
the sDENV panel.

Distinction between sDENV and ZIKVwprDENV panels. Previously, we reported
that the convalescent-phase sDENV panel not only recognized DENV1 NS1 protein but
also ZIKV NS1 protein (95.8% and 66.7%, respectively, in the IgG ELISA); similarly, the
ZIKVwprDENV panel recognized both ZIKV and DENV1 NS1 proteins (95.0% and 85.0%,
respectively) (26). Using the rOD ratio of ZIKV NS1 to DENV1 NS1 with a cutoff at 0.24,
we can distinguish ZIKVwprDENV and sDENV panels. We next tested the same panels
(�3 months PSO) using the mixed DENV1-4 and ZIKV NS1 IgG ELISAs and found that
the rOD ratio with a cutoff at 0.24 discriminated the ZIKVwprDENV and sDENV panels
with a sensitivity of 94.1% and a specificity of 87.0% (Fig. 4A to C). We further tested the
postconvalescent-phase (3 to 12 months PSO) sDENV and ZIKVwprDENV panels and
found that a cutoff rOD ratio at 0.24 distinguished these two panels with a sensitivity
of 91.7% and a specificity of 95.0% (Fig. 4D to F). Consistent with the high specificity,
the rOD ratio was �0.24 in 17 of 18 samples of the sDENV panel at later time points (1.5
to 6 years PSO) (see Fig. S2 in the supplemental material).

FIG 2 Results of DENV1-4 NS1 IgG ELISA tested with secondary DENV infection panels. (A) DENV1-4 NS1 IgG ELISA
was tested with postconvalescent-phase samples of the sDENV panel. Comparison of DENV1 and DENV1-4 NS1 IgG
ELISAs tested with convalescent- or postconvalescent-phase samples of sDENV (B), ZIKVwprDENV (C), and probable
ZIKVwprDENV (D) panels. Dotted lines indicate cutoff rOD values. Data are the means from two experiments (each
in duplicates); horizontal lines are the means from each panel. D1, DENV1; D2, DENV2; D3, DENV3; D4, DENV4; and
D1-4, DENV1-4.
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NS1 IgM ELISA. NS1 IgM ELISAs were also established to test samples of �3 months
PSO. The detection rate of the ZIKV NS1 IgM ELISA was 90%, whereas those of DENV1,
DENV2, and DENV1-4 NS1 IgM ELISAs ranged from 44.4% to 55.6% (Table 4). Of the
sDENV panel, there was less cross-reactivity to the ZIKV NS1 IgM ELISA (4%) than to the
ZIKV NS1 IgG ELISA (66.7%) (Fig. 4B). The ZIKVwprDENV panel showed 55% positivity in
the ZIKV NS1 IgM ELISA, whereas the sDENV panel showed 16.7% positivity in the
DENV1 NS1 IgM ELISA.

DISCUSSION

In this study, we developed DENV2, DENV3, and DENV4 NS1 IgG ELISAs to detect
convalescent- or postconvalescent-phase samples from RT–PCR-confirmed cases with
DENV and ZIKV infections. Our findings that DENV1-4 NS1 IgG ELISAs detect different
primary and secondary DENV infections and the combination with ZIKV NS1 IgG ELISAs
distinguishes sDENV and ZIKVwprDENV panels with high sensitivity and specificity have
important application to serodiagnosis and serosurveillance of DENV and ZIKV infec-
tions in regions where both viruses cocirculate.

We found that DENV1, DENV2, and DENV3 NS1 IgG ELISAs detected primary DENV
infection of homologous serotype with a sensitivity (100%) higher than that for

FIG 3 Results of DENV1-4 and ZIKV NS1 IgG ELISAs for different panels over time. DENV1-4 and ZIKV NS1 IgG ELISAs
were tested for convalescent- and postconvalescent-phase samples of pZIKV (A), ZIKVwprDENV (B), pDENV1 (C),
and pDENV2 (D) panels. Dotted lines indicate cutoff rOD values. Data are the means from two experiments (each
in duplicates); horizontal lines are the means from each panel. D1-4, DENV1-4.

TABLE 2 Results of NS1 IgG ELISAs in different serum/plasma panels

NS1 IgG ELISA

No. of IgG�/total samples (%) in different serum/plasma panelsa

Naive pWNV pDENV1 pDENV2 pDENV3 pZIKV sDENV ZIKVwprDENV

DENV1 1/55 (1.8) 0/36 (0) 25/25 (100) 9/24 (37.5) 10/10 (100) 0/38 (0) 64/67 (95.5) 26/35 (74.3)
DENV2 1/49 (2.0) 1/36 (2.7) 13/25 (52) 16/24b (66.7) 6/10 (60) 1/18 (5.6) 20/20 (100) 12/15 (80)
DENV3 0/40 (0) 0/36 (0) 8/25 (32) 4/24 (16.7) 10/10 (100) 0/18 (0) 20/20 (100) 8/15 (53.3)
DENV4 0/40 (0) 0/12 (0) 0/25 (0) 4/24 (16.7) 1/10 (10) 0/18 (0) 17/20 (85) 3/15 (20)
DENV1-4 0/55 (0) 1/36 (2.7) 24/25 (96) 14/24 (58.3) 10/10 (100) 0/38 (0) 64/67 (95.5) 30/35 (85.7)
ZIKV 0/48 (0) 0/36 (0) 0/25 (0) 0/24 (0) 0/10 (0) 19/38c (50) 32/67 (47.8) 34/35 (97.1)
apWNV, primary WNV infection; pDENV1, primary DENV1 infection; pDENV2, primary DENV2 infection; pDENV3, primary DENV3 infection; pZIKV, primary ZIKV infection;
sDENV, secondary DENV infection; ZIKVwprDENV, ZIKV infection with previous DENV infection.

bIgG� rate equals 4/11 (36.4%) and 12/13 (92.3%) for convalescent and postconvalescent-phase samples, respectively.
cIgG� rate equals 1/20 (5%) and 18/18 (100%) for convalescent and postconvalescent-phase samples, respectively.
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heterologous serotypes (23.8% to 100%) (Table 3). In contrast, DENV1, DENV2, DENV3,
and DENV4 NS1 IgG ELISAs detected secondary DENV infection with a sensitivity of
94.9% to 100%. This was in agreement with our previous study showing that anti-NS1
antibodies following primary DENV infection recognized mainly the NS1 protein of the
infecting serotype, whereas anti-NS1 antibodies after secondary DENV infection recog-
nized those of multiple serotypes (13). This suggests the difficulty of using single NS1
IgG ELISAs to identify the infecting DENV serotype due to variable degrees of cross-
reactivity after primary DENV infection and extensive cross-reactivity after secondary
DENV infection. Notably, the mixed DENV1-4 NS1 IgG ELISA detected, though did not
distinguish, different primary and secondary DENV infections with a sensitivity of 95.6%
and a specificity of 89.5%, suggesting the convenience and feasibility of using mixed
DENV1-4 NS1 IgG ELISAs alone to detect different DENV infections (within the DENV
serocomplex) rather than distinguishing different serotypes.

FIG 4 Results of DENV1-4 and ZIKV NS1 IgG ELISAs for sDENV and ZIKVwprDENV panels. DENV1-4 NS1 (A, D) and
ZIKV NS1 (B, E) IgG ELISAs were tested for convalescent-phase (�3 month PSO [A to C]) and postconvalescent-
phase (3 to 12 months PSO [D to F]) samples of sDENV and ZIKVwprDENV panels; the rOD ratio of ZIKV to DENV1-4
NS1 (C, F) is shown. Dotted lines indicate cutoff rOD values; dashed lines are the cutoff rOD ratio (0.24). Data are
the means from two experiments (each in duplicates); horizontal lines are the means from each panel. The
two-tailed Mann-Whitney test was used to compare two groups. D1-4, DENV1-4.

TABLE 4 Results of NS1 IgM ELISAs in different serum/plasma panels

NS1 IgM ELISAa

No. of IgM�/total samples (%) in different serum/plasma panelsb

Naive pDENV1 pDENV2 pZIKV sDENV ZIKVwprDENV

ZIKV 0/8 (0) 0/5 (0) 18/20 (90) 1/24 (4) 11/20 (55)
DENV1 0/16 (0) 5/9 (55.6)c 0/20 (0) 4/24 (16.7) 3/20 (15)
DENV2 0/4 (0) 5/9 (55.6)
DENV1-4 0/4 (0) 4/9 (44.4)c 5/9 (55.6)
aELISA, enzyme-linked immunosorbent assay; pDENV1, primary DENV1 infection; pDENV2, primary DENV2
infection; pZIKV, primary ZIKV infection; sDENV, secondary DENV infection; ZIKVwprDENV, ZIKV infection
with previous DENV infection.

bOnly samples collected �3 months post-symptom onset were tested for IgM.
cIgM� rate was 3/3 (100%) for samples collected �1 month.
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A recent study reported an increased risk of severe disease accompanying break-
through DENV infection among dengue-naive individuals receiving Dengvaxia, the
currently licensed chimeric yellow fever dengue tetravalent dengue vaccine, and
highlighted the importance of determining the DENV immune status prior to admin-
istering Dengvaxia and identifying DENV-naive individuals among Dengvaxia recipients
as a risk group in regions of endemicity (36–39). Another study using a mixed DENV1-4
NS1 IgG ELISA to determine DENV immune status among Dengvaxia recipients re-
ported high sensitivity and specificity. However, limited numbers of other flavivirus
controls (4 ZIKV and 3 WNV samples) showed positivity (40), raising concerns about its
practical application in regions of endemicity where multiple flaviviruses are prevalent.
With �124 control samples, including naive, pZIKV, and pWNV panels, our DENV1-4
NS1 IgG ELISA showed specificity at levels to suggest it might be a useful tool to
determine DENV immune status in regions of endemicity.

In addition, we observed a trend of increased detection rates for the NS1 IgG ELISA
of convalescent to postconvalescent phases from primary infection panels (pZIKV,
pDENV1, and pDENV2) (Fig. 3A, C, and D) as opposed to the high detection rates of
both convalescent and postconvalescent phases from repeated infection panels (sDENV
and ZIKVwprDENV) (Fig. 2B and 3B). This was in agreement with a recent study of a
blockade-of-binding ZIKV NS1 ELISA (25), in which the detection rate increased (77.4%
to 98.3%) from early convalescent to late convalescent phases for the pZIKV panel and
remained high (92.3% to 94.4%) for the ZIKVwprDENV panel. Our ZIKV NS1 IgG ELISA
had an overall sensitivity of 100%, which is higher or compatible with those reported
recently (79% to 100%) using the Euroimmun ZIKV NS1 IgG ELISA kit (41–44).

Consistent with our previous report that sDENV and ZIKVwprDENV panels recognize
both DENV1 and ZIKV NS1 proteins, we found that these two panels recognize both
DENV1-4 and ZIKV NS1 proteins in IgG ELISAs (Fig. 4; Table 3). Moreover, we found that
the rOD ratio of DENV1-4 NS1 to ZIKV NS1 distinguished these two panels with a
sensitivity of 94.1% to 91.7% and a specificity of 87.0% to 95.0% (Fig. 4).

According to the current CDC guidelines, positive or equivocal IgM tests based on
E protein require PRNT (5, 6), which can confirm pZIKV infection but not in those with
previous flaviviral infections, including secondary DENV and ZIKVwprDENV infections.
Although a recent study reported reduced cross-neutralization against ZIKV among
those with secondary DENV infection more than 6 months PSO, 23% still cross-
neutralize ZIKV (45). Another study of antibody cross-neutralization patterns showed
that ZIKV lies outside the DENV serocomplex, suggesting the neutralizing antibody
titers distinguish ZIKV and DENV infections (46). However, the sensitivity and specificity
of neutralizing antibody titers to differentiate different DENV and ZIKV infections,
especially sDENV and ZIKVwprDENV panels, were not reported. Moreover, the feasibility
of using time-consuming neutralization tests for serodiagnosis and serosurveillance in
the field remains a challenge.

Our combined DENV1-4 and ZIKV NS1 IgG ELISAs could be applied to routine
serological tests for detecting ZIKV infection both in regions of DENV endemicity and
in regions where it is nonendemic and to serosurveillance and Zika pregnancy studies
to understand the epidemiology, transmission, and complication of ZIKV infection
during pregnancy (47, 48). Given that the CZS may affect both microcephalic and
normocephalic infants during their growth and development (48, 49), our IgG assays
could be used in retrospective studies to understand the contribution of pZIKV infec-
tion alone or ZIKVwprDENV infection to the full spectrum of CZS. Additionally, these
ELISAs are simple, inexpensive, and readily applicable to field sites in developing
countries. They can be further developed into rapid tests or high-throughput formats
for various clinical or field studies.

There are several limitations. First, the sample size in each panel with well-
documented infections is small; future studies involving a larger sample size, including
more sequential samples, are needed to validate these observations. Second, as limited
samples of PSO of �3 months were available from patients with primary DENV
infection (Table 1), the study focused on NS1-based IgG ELISAs rather than IgM ELISAs.
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The detection rates of DENV1, DENV2, and DENV1-4 NS1 IgM ELISAs were low (44.4%
to 55.6%), whereas that of the ZIKV-NS1 IgM ELISA (90%) was higher than those
reported previously (41–43). Future studies with a larger size of samples with PSO of �3
months are warranted. Third, other control panels including samples from uninfected
pregnant women and individuals with IgG antibodies to chikungunya virus, yellow
fever virus, Plasmodium species, and Japanese encephalitis virus should be included in
future studies to validate the specificity of our assays. Fourth, since ZIKV has spread to
regions where multiple flaviviruses cocirculate, serological tests that can distinguish
ZIKV from other medically important flaviviruses, such as JEV, WNV, YFV, and TBEV,
remain to be explored (50, 51). Additionally, given the success of several flaviviral
vaccines and ongoing vaccine trials in regions of flavivirus endemicity, the develop-
ment serological tests to distinguish ZIKV infection from immunizations with different
flaviviral vaccines, including DENV, JEV, YFV, and TBEV vaccines, is warranted (50, 51).
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